ar X iv : 0 90 6 . 06 76 v 1 [ m at h - ph ] 3 J un 2 00 9 Calculus on Fractal Curves in

نویسنده

  • Abhay Parvate
چکیده

A new calculus on fractal curves, such as the von Koch curve, is formulated. We define a Riemann-like integral along a fractal curve F , called F α-integral, where α is the dimension of F . A derivative along the fractal curve called Fα-derivative, is also defined. The mass function, a measurelike algorithmic quantity on the curves, plays a central role in the formulation. An appropriate algorithm to calculate the mass function is presented to emphasize algorithmic aspect. Several aspects of this calculus retain much of the simplicity of ordinary calculus. We establish a conjugacy between this calculus and ordinary calculus on the real line. The Fα-integral and Fαderivative are shown to be conjugate to the Riemann integral and ordinary derivative respectively. In fact, they can thus be evalutated using the corresponding operators in ordinary calculus and conjugacy. Sobolev Spaces are constructed on F , and Fαdifferentiability is generalized using Sobolev like constructions. Finally we touch upon an example of a diffusion equation on fractal curves, to illustrate the utility of the framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 2 . 11 06 v 3 [ m at h . Q A ] 5 J un 2 00 9 ON PROJECTIVE EQUIVALENCE OF UNIVARIATE

We pose and solve the equivalence problem for subspaces of Pn, the (n + 1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence p...

متن کامل

ar X iv : h ep - p h / 02 06 06 1 v 2 9 J un 2 00 2 B̄ 0 → π + X in the Standard Model

In this paper we investigate the possibility of studying B → π form factor using the semi-inclusive decays ¯

متن کامل

ar X iv : m at h - ph / 0 30 60 23 v 1 9 J un 2 00 3 Non - Archimedean Geometry and Physics on

This is a brief review article of various applications of non-Archimedean geometry, p-adic numbers and adeles in modern mathematical physics.

متن کامل

ar X iv : 0 90 6 . 07 63 v 1 [ m at h . C O ] 3 J un 2 00 9 HIGHER DIMENSIONAL

We prove upper bounds on the face numbers of simplicial complexes in terms on their girths, in analogy with the Moore bound from graph theory. Our definition of girth generalizes the usual definition for graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009